Valley Water selects Locus Environmental Software for Data Collection and Management

Locus will provide water quality and analytical data management software for Valley Water

MOUNTAIN VIEW, Calif., 1 September 2020 — Locus Technologies (Locus), industry leader in water data management software, today announced that Valley Water (formerly Santa Clara Valley Water District) has chosen Locus environmental software for their data collection and management. 

Valley Water has selected Locus’ environmental software, EIM, following consultant work Locus provided for the utility going back 14 years. They will seek to utilize Locus EIM as a laboratory database management system, and for data analytics.Locus EIM will be used to manage sample data for over 200 million gallons of drinking water consumed daily by over 2 million people in the district. 

Valley Water has an award-winning track record of bringing the highest-quality water to the Bay AreaBeing local, we see the hard work that Valley Water puts into providing some of the best drinking water available anywhereWe are proud to be a part of that process,” said Wes Hawthorne, President of Locus.  

Technology Outlook for the Environmental Industry

Neno Duplan is founder and CEO of Locus Technologies, a Silicon Valley-based environmental software company founded in 1997. Locus evolved from his work as a research associate at Carnegie Mellon in the 1980s, where he developed the first prototype system for environmental information management. This early work led to the development of numerous databases at some of the nation’s largest environmental sites, and ultimately, to the formation of Locus in 1997.

Mr. Duplan recently sat down with Environmental Business Journal to discuss a myriad of topics relating to technology in the environmental industry such as Artificial Intelligence, Blockchain, Multi-tenancy, IoT, and much more.

Download a preview

Click here to learn more and purchase the full EBJ Vol XXXIII No 5&6: Environmental Industry Outlook 2020-2021

Stay in Compliance With Smart Sample Planning and Management Tools

Imagine the time savings and the simplicity of having your regulatory requirements all lined out for the year without having to worry about missing required samples. For water utilities, this is especially valuable given the strict schedules and public health implications of missing sampling events. Locus sample planning streamlines repetitive sampling, such as required samples for drinking water or monitoring wells. Any sampling events can be planned and reused repeatedly, even with tweaks to the schedule for the samples to be collected. We’ve outlined some key features of Locus sample planning in this infographic.

Locus Sample Planning

 

Infographic: 12 Ways SaaS Can Improve Your Environmental Data

Software as a service (SaaS) databases offer several unique features that allow you to manage your environmental data more thoroughly and efficiently. This infographic highlights twelve key features of SaaS databases for environmental software. 12 Ways SaaS Can Improve Your Environmental Data

This infographic was created based on a four part series of blog posts on the same topic, which can be read here.

Evergreen Natural Resources Selects Locus Technologies for Environmental Software

Locus will provide environmental field and analytical data management software for Evergreen Natural Resources.

MOUNTAIN VIEW, Calif., 17 March 2020 — Locus Technologies, industry leader in environmental software, today announced that Evergreen Natural Resources, a privately-held energy company based in Denver, Colorado, has chosen Locus environmental software for their data collection and management.

Evergreen Natural Resources has selected Locus’ environmental software, EIM, after proof of concept and usability testing. They will seek to utilize Locus EIM as a laboratory database management system, and for regulatory report generation, while also taking advantage of Locus’ premium GIS tool, GIS+, as well as Locus Mobile.

“With over 2,600 unique locations that require routine sampling, Locus’ environmental and GIS software allows us to collect, manage, visualize, and analyze data. Locus EIM aligns with our strategy to increase availability and reduce our internal application infrastructure footprint,” said Cesar Zayas, IT Director of Evergreen.

“Evergreen Natural Resources is a rapidly emerging company in the energy sector, and their decision to utilize Locus’ powerful environmental software shows their objective to manage their data quality at the highest level. Our scalable software will match their continued growth,” said Wes Hawthorne, President of Locus.

The Expertise Behind the Software

When choosing Locus, you can be confident that your EHS software is built and supported by the experts. Our team holds degrees and certifications in environmental engineering, mathematics, computer science, and beyond. We understand the challenges of EHS compliance and build our solutions with those in mind.

Locus Technologies Experts Behind the Software

 

A Visualization is Worth a Thousand Data Points

Visualize environmental data with Locus EIM.

You’ve probably heard the saying “A picture is worth a thousand words”. While the advice seems timeless, it actually is fairly modern and started with newspaper advertisements from the 1910s. Furthermore, it’s only since the 1970s that cognitive science has caught up and determined the truth in the saying. Basically, humans have very limited working memory, which is the “storage space” for processing data while making decisions and reasoning through problems. A good picture, though, works as “offline storage” that lets you push information out of your limited working memory and into another format for use as needed. This advantage is especially true when the picture is a useful data visualization such as a chart or map. In this case, you could say “A visualization is worth a thousand data points”.

How limited is working memory? There is a rough consensus, known as Miller’s law, that you can only have “seven, plus or minus two” items in memory at one time. Think of a typical 10-digit phone number that you may need to memorize for a short period. It can be hard to remember all ten individual digits as one large number, as that exceeds working memory. However, you can employ a technique called “chunking” to group items together, reducing the number of items to remember. If you group the phone numbers into the typical ###-###-#### pattern, you only have to remember 3 chunks of 3 to 4 items. A good visualization not only stores information offline, reducing pressure on your brain; it also groups many data items into a much smaller number of chunks so you can process the data more efficiently.

Let’s look at some real examples of how visualizations help by working through a typical scenario using EIM, Locus Technologies’ cloud-based application for environmental data management. Assume you manage a site where you are tracking tritium (H-3) levels in groundwater using a set of monitoring wells. You want to know where tritium has been high over the past ten years. EIM provides different visualizations for exploring your data and finding the answers you need.

First let’s just look at an export of all the data. Using the analysis functions in EIM, you search for all tritium concentrations from monitoring wells for the past ten years. EIM sends the results to a table as shown in Figure 1.

Tabular view of Tritium query results in Locus EIM

Figure 1 Tabular view of Tritium query results

The table has 717 results for multiple wells. It is very difficult to see overall patterns here, either spatially or temporally. Each of the 717 results is one item, and if you try to scroll and sort the table to see if tritium is increasing or decreasing over time, your working memory is quickly overwhelmed. This is where a good data visualization can help.

To start, you decide to send the data to the Locus GIS+ application, using the graduated color and size options. The GIS+ takes the concentrations from the results table and plots them on a site map using the stored coordinates for each well, as shown in Figure 2. The map represents each location with a symbol that is colored and sized to reflect the actual maximum value at that location. The map legend shows you how this was done. Large red circles, for example, represent results from 4,500 to 7,000 pCi/L. As the sizes get smaller, and the colors go from red to blue, the actual result gets smaller.

Graduated symbol and color map in Locus EIM

Figure 2 Graduated symbol and color map of tritium concentrations

This map is great for showing spatial patterns in the data. You can easily pick out a couple of “areas of concern” near the center of the map – one with orange and yellow circles, and another with red circles. To revisit our discussion on working memory and chunks, the map takes the 717 results and summarizes them so your brain can quickly pick out the two areas of concern.

Let’s look more closely at the area of concern with higher results. If we zoom in on the map, we see the two red locations are wells MCOI-5 and MCOI-6 as shown in Figure 2.

Zoomed map for one area of concern in Locus GIS+

Figure 3 Zoomed map for one area of concern

The map shows you where these two high concentrations of tritium are located. But what if you want to see how the concentrations vary over time? You can make a time series chart in EIM for these wells and include a desired regulatory limit, as shown in Figure 4. The green and blue lines represent the tritium concentrations over time for the two wells. The red line at top shows a regulatory action limit.

Line chart in Locus EIM

Figure 4 Line chart showing time series for tritium for two wells, with action limit

The chart shows you two important things. First, and most importantly, all the tritium concentrations for both wells lie well below the regulatory action limit! Second, the concentrations have very different trends for the two wells: MCOI-6 started higher but has trended lower, while MCOI-5 started below MCOI-6 but has now surpassed it. You can confirm these general impressions by running concentration regression charts in EIM for the two locations, as shown in Figure 5. The charts show the best fit regression line and the strength of the relation.

Regression chart in Locus EIM Regression chart in Locus EIM

Figure 5 Concentration regression charts in EIM

You can grasp these facts quickly because the of how the chart works. Each series of concentrations for a well consists of multiple data items that are ‘chunked’ into one line on the chart. There are two many individual data points on this chart for your working memory, but only three lines, which can easily be manipulated in your brain. For comparison, Figure 6 shows the actual data values for the chart. The time trends shown above in the charts are not as obvious from the table.

Data values in Locus EIM

Figure 6 Actual data values for the chart in Figure 4

Now, this might be counter-intuitive, but what if you wanted to put some of these values on the map? While visualizations do help understand data, sometimes it can be useful to have the data shown as well so viewers can see where the visualizations came from. The EIM Data Callouts function can do this. Figure 7 shows data callouts for the two wells. Each callout shows the maximum annual tritium result for 2010-2020. Now you have the actual tritium concentrations located spatially next to the matching wells!

Data callouts in Locus GIS+

Figure 7 Data Callouts in EIM GIS+

Now that you know where your tritium might be a concern, suppose you want to see what’s going on with groundwater at your site. The EIM contouring module does that for you. There are multiple contouring options, but for this example let’s use the default options for kriging. We know from Figure 2 that the wells MCOI-5 and MCOI-6 are located in the Mortandad Canyon. Figure 8 shows the contouring map generated from EIM for the groundwater wells in that canyon, using the most recent groundwater levels. Higher groundwater values are lighter in color than lower values.

The area of concern is marked with an arrow at upper left. The contour lines and values can help you determine how the tritium might migrate in your site. Imagine trying to picture this just using tables of groundwater readings! With the contour map, the readings turn into lines that can be chunked together for analysis: the higher levels at the upper left forming a “plateau”, the closely packed lines moving across the map to the east, and then the “saddle” area at lower right. These different line patterns carry particular meanings to engineers and scientists who interpret contour maps.

Contour map for groundwater in Locus GIS+

Figure 8 Contour map for groundwater levels

The contour map completes our tour of some of the visualization tools in EIM. Because visualizations let you chunk items together, you can look at the ‘big picture” and not get lost in tables of data results. Your working memory stays within its capacity, your analysis of the information becomes more efficient, and you can gain new insights into your data.

Acknowledgments: All the data in EIM used in the examples was obtained from the publicly available chemical datasets online at Intellus New Mexico.

Learn more about Locus EIM.

 

About the Author—Dr. Todd Pierce, Locus Technologies

Dr. Pierce manages a team of programmers tasked with development and implementation of Locus’ EIM application, which lets users manage their environmental data in the cloud using Software-as-a-Service technology. Dr. Pierce is also directly responsible for research and development of Locus’ GIS (geographic information systems) and visualization tools for mapping analytical and subsurface data. Dr. Pierce earned his GIS Professional (GISP) certification in 2010.

Locus Technologies receives prestigious EBJ Award for 14 consecutive years

Environmental Business Journal (EBJ) recognized the firm for growth and innovation in the field of Information Technology

MOUNTAIN VIEW, Calif., 10 February 2020

Locus Technologies, leading provider of environmental management and EHS software, was awarded a 14th consecutive award from Environmental Business Journal (EBJ) for growth and innovation in the field of Information Technology.

EBJ is a business research publication providing strategic business intelligence to the environmental industry. Locus received the 2019 EBJ Award for Information Technology by expanding their software and services.

Among the key drivers for Locus in 2019 was the growth of key software applications for waste and sustainability, as well as the introduction of their facilities management app. Locus software also now further integrates with EPA compliance systems like CMDP, eManifest, and eGGRT. Finally, in terms of services, Locus achieved over 500 GHG verifications under the California AB32 program, being the first company to do so. They were also among the first independent bodies to become certified for the new California Low Carbon Fuel Standard verification.

“We would like to express our gratitude for receiving the EBJ Information Technology award for another year. We look forward to providing our customers with cutting-edge software and services as we seek to improve in the areas of artificial intelligence, IoT integration, and blockchain technology,” said Wes Hawthorne, President of Locus Technologies.

How to extend your EHS software with integrated systems

Integration with other systems, whether on-premises or in the cloud, has become a key wishlist item for many EHS software buyers. It allows you to take advantage of other tools used by your organization (or available from third parties) to simplify processes, access information, and enhance communication, both internally and externally.

Why Companies Replace Their EHS&S Software Systems

A recent NAEM study explored the main reasons EHS&S professionals look to replace their current software configuration. Among the most reported issues were overall performance, customer support, and software customization. The following infographic highlights both why EHS&S professionals are seeking new software, and wheat criteria are most important in shopping for a new software system.

locus_infographic_why-companies-replace-software-1