Locus is here to help simplify your fenceline regulatory reporting!

US EPA fenceline monitoring data collection officially begins on January 30, 2018. We have put together an infographic to show you some of the ways Locus EIM can help you streamline, consolidate, and take control of all your important environmental information using maps, data reports, formatted outputs, charts, and more!

Locus Fenceline Monitoring - Infographic

Click image for larger version  

[sc_button link=”https://www.locustec.com/applications/environmental-information-management/#quote-form” text=”Set up a demo” link_target=”_self” centered=”1″]

Celebrating 55 years of GIS-based EHS data insights

GIS Day was established in 1999 to showcase the power and flexibility of geographical information systems (GIS).  In celebration of the 55th birthday of GIS, we’ve compiled a brief history of the evolution of this powerful technology, with a special focus on how it can be used in EHS applications to make environmental management easier.

Not only is GIS more powerful than ever before—it is also vastly more accessible.  Anyone with Internet access can create custom maps based on publicly available data, from real-time traffic conditions to environmental risk factors, to local shark sightings. Software developers, even those at small companies or startups, now have access to APIs for integrating advanced GIS tools and functionality into their programs.

Origins of GIS

Before you can understand where GIS is today, it helps to know how it started out. This year is the 55th anniversary of the work done by Roger Tomlinson in 1962 with the Canada Land Inventory. We consider this the birth of GIS, and Mr. Tomlinson has been called the “father of GIS”.

The original GIS used computers and digitalization to “unlock” the data in paper maps, making it possible to combine data from multiple maps and perform spatial analyses. For example, in the image shown here from the Canada Land Inventory GIS, farms in Ontario are classified by revenue to map farm performance.

An early GIS system from the Canada Land Inventory, in Data for Decisions, 1967

An early GIS system from the Canada Land Inventory, in Data for Decisions, 1967
Photo: Mbfleming. “Data for Decisions (1967).” YouTube, 12 Aug. 2007, https://youtu.be/ryWcq7Dv4jE.
  Part 1, Part 2, Part 3

In 1969, Jack Dangermond founded Esri, which became the maker of, arguably, the world’s most popular commercial GIS software. Esri’s first commercial GIS, ARC/INFO, was released in 1982, and the simpler ArcView program followed in 1991. Many of today’s most skilled GIS software developers can trace their roots back to this original GIS software.

Back then, GIS work required expensive software packages installed on personal computers or large mainframe systems. There was no Google Maps; all map data had to be manually loaded into your software. Getting useful data into a GIS usually required extensive file manipulation and expertise in coordinate systems, projections, and geodesy.

While the government, utility, and resource management sectors used GIS heavily, there was not much consumer or personal use of GIS. Early GIS professionals spent much of their time digitizing paper maps by hand or trying to figure out why the map data loaded into a GIS was not lining up properly with an aerial photo. This may sound familiar to those who have been in the environmental industry for awhile.

Esri’s ArcView 3.2 for desktop computers (from the 1990s)

Esri’s ArcView 3.2 for desktop computers (from the 1990s)
https://map.sdsu.edu/geog583/lecture/Unit-3.htm

The Google Revolution

How much has changed since those early days! After the release of OpenStreetMap in 2004, Google Maps and Google Earth in 2005, and Google Street View in 2007, GIS has been on an unstoppable journey—from only being used by dedicated GIS professionals on large computers in specific workplaces, to be accessible to anyone with an internet browser or a smartphone. High-quality map data and images—often the most expensive item in a GIS project in the 1990’s — are now practically free.

Just think how revolutionary it is that anyone can have instant access to detailed satellite images and road maps of almost anywhere on Earth! Not only can you perform such mundane tasks as finding the fastest route between two cities or locating your favorite coffee shop while on vacation—you can also see live traffic conditions for cities across the globe; view aerial images of countries you have never visited; track waste drums around your facility; and get street level views of exotic places. Back in 1991, such widespread access to free map data would have seemed like something straight out of science fiction.

Traffic conditions in London, 3:30 pm 10/16/2017, from Google Maps

Traffic conditions in London, 3:30 pm 10/16/2017, from Google Maps

South Base Camp, Mount Everest, Google StreetView

South Base Camp, Mount Everest, Google StreetView

Mashups in the cloud

Obviously, the amount of spatial data needed to provide detailed coverage of the entire globe is far too large to be stored on one laptop or phone. Instead, the data is distributed across many servers “in the cloud.” Back in the 1990s, everything for one GIS system (data, processing engine, user interface) needed to be in the same physical place—usually one hard drive or server. Now, thanks to the internet and cloud computing, the data can be separate from the software, creating “distributed” GIS.

The combination of freely available data with distributed GIS and the power of smart phones has led us to the age of “neogeography”—in which anyone (with some technical knowledge) can contribute to online maps, or host their maps with data relevant to their personal or professional needs. GIS no longer requires expensive software or cartographical expertise; now, even casual users can create maps linking multiple data sources, all in the cloud.

Google’s MyMaps is an example of a tool for easily making your maps. Maps can range from the playful, such as locations of “Pokemon nests,” to the serious, such as wildfire conditions.

These online maps can be updated in real time (unlike paper maps) and therefore kept current with actual conditions. Such immediate response is instrumental in emergency management, where conditions can change rapidly, and both first responders and the public need access to the latest data.

Map showing wildfire and traffic conditions in northern California, 10/16/2017

Map showing wildfire and traffic conditions in northern California, 10/16/2017
https://google.org/crisismap/us-wildfires

Furthermore, software programmers have created online GIS tools that let non-coders create their maps. These tools push the boundaries of distributed GIS even further by putting the processing engine in the cloud with the data. Only the user interface runs locally for a given user. During this period of GIS history, it became easy to create “mashups” for viewing different types of disparate data at once, such as natural hazard risks near offices, pizza stores near one’s neighborhood, EPA Superfund sites near one’s home, property lines, flood plains, landslide vulnerability, and wildfire risk.

Floodplain data for Buncombe County, NC

Floodplain data for Buncombe County, NC
https://buncombe-risk-tool.nemac.org

Programming GIS with APIs

Another significant advance in GIS technology is the ability to integrate or include advanced GIS tools and features in other computer programs. Companies such as Google and Esri have provided toolkits (called APIs, or application programming interfaces) that let coders access GIS data and functions inside their programs. While neogeography shows the power of personal maps created by the untrained public, computer programmers can use APIs to create some very sophisticated online GIS tools aimed at specific professionals or the public.

One example is the publicly-available Intellus application that Locus Technologies developed and hosts for the US Department of Energy’s Los Alamos National Laboratory. It uses an Esri API and distributed GIS to provide access to aerial images and many decades of environmental monitoring data for the Los Alamos, NM area. Users can make maps showing chemical concentrations near their home or workplace, and they can perform powerful spatial searches (e.g., “find all samples taken within one mile of my house in the last year”). The results can be color-coded based on concentration values to identify “hot spots”.

Map from Intellus showing Tritium concentrations near a specified location

Map from Intellus showing Tritium concentrations near a specified location
https://www.intellusnmdata.com

Another example of more sophisticated forms of analysis is integration of GIS with environmental databases. Many government facilities and private vendors incorporate GIS with online data systems to let public users evaluate all types of information they find relevant.

For example, contour lines can be generated on a map showing constant values of groundwater elevation, which is useful for determining water flow below ground. With such powerful spatial tools in the cloud, any facility manager or scientist can easily create and share maps that provide insight into data trends and patterns at their site.

Groundwater contour map

Groundwater contour map where each line is a 10 ft. interval, from the Locus EIM system

Other examples include monitoring air emissions at monitoring sites (like US EPA’s AirData Air Quality Monitors, shown below) and actual stream conditions from the USGS (also shown below).

Screen capture of air quality data from US EPA AirData GIS app

Screenshot from US EPA AirData Air Quality Monitors interactive GIS mapping platform, showing Long Beach, California

 

Screen capture of USGS National Water Information System interactive GIS map tool

Screen capture of USGS National Water Information System interactive GIS map tool, showing a site in Mountain View, California

There’s a (map) app for that

One particularly exciting aspect of GIS today is the ability to use GIS on a smartphone or tablet. The GIS APIs mentioned above usually have versions for mobile devices, as well as for browsers. Programmers have taken advantage of these mobile APIs, along with freely available map data from the cloud, to create apps that seamlessly embed maps into the user experience. By using a smartphone’s ability to pinpoint your current latitude and longitude, these apps can create personalized maps based on your actual location.

A search in the Apple AppStore for “map” returns thousands of apps with map components. Some of these apps put maps front-and-center for traditional navigation, whether by car (Waze, MapQuest, Google), public transit (New York Subway MTA Map, London Tube Map), or on foot (Runkeeper, Map My Run, AllTrails). Other apps use maps in a supporting role to allow users to find nearby places; for example, banking apps usually have a map to show branches near your current location.

What’s really exciting are the apps that allow users to enter data themselves via a map interface. For example, HealthMap’s Outbreaks Near Me not only shows reports of disease outbreaks near your location, but it also lets you enter unreported incidents. The GasBuddy app shows the latest gasoline prices and lets you enter in current prices. This “crowdsourcing” feature keeps an app up-to-date by letting its users update the map with the latest conditions as they are happening.

The Outbreaks Near Me app for phones (left) and the GasBuddy app for tablets (right)

The Outbreaks Near Me app for phones (left) and the GasBuddy app for tablets (right)

EHS professionals can further harness the power of GIS using mobile applications.  For example, in the Locus Mobile app for field data collection, users can enter environmental data—such as temperature or pH measurements—from a sampling location, then upload the data back to cloud-based environmental management software for immediate review and analysis. Mobile apps can also support facility compliance audits, track current locations of hazardous waste drums, collect on-scene incident data (complete with photos), and record exact locations for mapping by colleagues back in the office.

GIS-enabled mobile apps also typically include a map interface for navigating to data collection points and tracking visited locations. Other key features to look for include ad hoc location creation for capturing unplanned data—this lets users create new data collection points “on the fly” simply by clicking on the map.

Locus Mobile App

Views of many different mobile app use cases from tracking drums to collecting field data

A bright future for GIS applications within EHS software

Where will GIS as a whole go from here? It’s possible that augmented reality, virtual reality, and 3D visualization will continue to expand and become as ubiquitous as the current “2D” maps on browsers and phones. Also, the “internet of things” will surely have a GIS component because every physical “thing” can be tied to a geographical location. Similarly, GIS can play an important role in “big data” by providing the spatial framework for analysis.

GIS is one of the most effective ways to convey information to a wide range of users, from corporate managers looking at the company’s key metrics to operational personnel looking for incidents across facilities and trying to find trends. It is a highly intuitive data query interface that empowers users to explore the data hidden deep in enterprise EHS databases. The examples presented above are just the tip of the iceberg for the range of possibilities to simplify communication of information and look more broadly across enterprises to identify where real or potential issues lie.

An EHS software system should have many ways to extract data and information to form insights beyond a few “canned” reports and charts. A spatially-accurate picture can often provide more actionable insight than tables and text. Imagine being able to see spill locations, incident locations, environmental monitoring stations for air quality, wastewater outfalls, central and satellite waste accumulation area locations, and PCB and asbestos equipment and/or storage locations—all visually represented on an actual map of your facility and its surroundings. All these types of maps are invaluable in an enterprise EHS software system and should be a critical item on your checklist when selecting software for your EHS needs.

Thanks to the GIS Timeline for providing some of the history for this article.


Locus employee Todd PierceAbout guest blogger— Dr. Todd Pierce, Locus Technologies

Dr. Pierce manages a team of programmers tasked with development and implementation of Locus’ EIM application, which lets users manage their environmental data in the cloud using Software-as-a-Service technology. Dr. Pierce is also directly responsible for research and development of Locus’ GIS (geographic information systems) and visualization tools for mapping analytical and subsurface data. Dr. Pierce earned his GIS Professional (GISP) certification in 2010.


[jwplayer mediaid=”16590″]

Interested in Locus’ GIS solutions?

Introducing Locus GIS+. All the functionality you love in EIM’s classic Google Maps GIS for environmental management— now integrated with the powerful cartography, interoperability, & smart-mapping features of Esri’s ArcGIS platform!

Learn more about GIS+

 

Top 10 cool features in Locus Mobile

Maybe you’re already using Locus’ iOS app for field data collection, or maybe you’re just curious about how it integrates with Locus’ cloud software.  Either way, we’ve put together a list of the ten coolest features of Locus Mobile.


1. Locus Mobile works with both EIM and Locus Platform applications

The full-featured version of the Locus Mobile iOS application works for either Locus EIM or Locus Platform.  This means that customers using both our key products can manage their work in a single, unified mobile application.

Locus Mobile works with EIM and LP

2. Get temporary coordinates for new sampling locations using the mobile device’s GPS

Locations can be added to EIM without coordinates (Latitude/Longitude or Northing/Easting). If a location without coordinates is used in a Provision File, the location will have a No location icon symbol associated with it (a Location not started symbol if coordinates are known). When a location with a triangle is selected, the user is prompted with the option to ‘Set Location’ – capture the current coordinates (Lat/Long) of where the user is located. When the provision file is loaded to EIM, the data manager will have the option to update the location in EIM with these coordinates. The accuracy of these mobile captured coordinates are below survey grade, but can be updated another time.

Locus Mobile - Temporary coordinates

 

3. In EIM, more than one user can be assigned to a provision file– the data synced (uploaded) to EIM is separated based on the user that collected the data

If you’re not sure who will be sampling on a given day, you can assign multiple users to your provision files.  Later, you can easily see who is responsible for certain sample collection data.

Locus Mobile - Multi users

 

4. Locus Platform’s custom data type icons are displayed in Locus Mobile

Has your Locus Platform been customized to use specific icons and colors?  These icons are also used in Locus Mobile, so if you use both Locus Platform and the mobile app, you’ll instantly recognize your data types while out in the field.

Locus Mobile - LP icons

 

5. Check your sampling progress at any time during the sampling event, without having to search through your locations to see what locations you sampled and when

Although you can see the status on your map and location list, sometimes those lists are very long, and the map gets crowded when large field events are taking place.  Tap the Information icon to see a log of the collected samples for the day.

Locus Mobile - Sampling log

 

6. You can set valid field data ranges with warnings or validation stops to help ensure you have not entered bad data

For EIM Locus Mobile users, when you’re collecting a lot of field data, the “fat finger” problem can make for some colorful data entry errors.  That’s why we built in the ability to specify valid data ranges for any parameter— and provide a warning when you’re about to enter a bad value during field data collection.
Locus Mobile - Data ranges

 

7. Locus Mobile works offline

We know that not every field location is served by wireless or a strong cell signal, so Locus Mobile is built to keep working whether you’re online or offline.  This gives you the flexibility to collect field data from anywhere, then sync back to Locus EIM or Locus Platform when you can.

Locus Mobile - Offline mode

 

8. You can configure default fields in Locus Mobile that will track with the dataset, but won’t show up in the field forms— making your forms less cluttered but still capturing all the information you need

Choose which required fields you want to be visible in Locus Mobile. You also have the option to include your optional field information without displaying them. This gives you control over which fields you see while in the field.

Locus Mobile - Default fields

 

9. Search and filter for locations in a provision file

Dealing with a long list of locations? The search field above the location list lets you start typing the Location ID or Location Description to filter the list. Even better, the extent of the map will adjust to zoom to the matching selections!

Locus Mobile - Location search

 

10. Switch locations quickly with the QR code scanner

Locus Mobile can access your device’s camera and scan QR codes for quick and efficient retrieval of individual locations included in a given provision file.

Locus Mobile - QR code scanner

 


Our product teams are constantly working to improve and add new functionality to Locus Mobile.  If you’re a current user, please let your Locus Account Manager know if you have any ideas for how we can make your field data collection workflows faster and easier.  If you’re not using Locus Mobile yet, please ask them for a free demo!

Celebrating 55 years of improving spatial thinking with GIS technology

Today, November 15, is GIS Day—an annual celebration established in 1999 to showcase the power and flexibility of geographical information systems (GIS).

Not only is GIS more powerful than ever before—it is also vastly more accessible.  Anyone with Internet access can create custom maps based on publicly available data, from real-time traffic conditions to environmental risk factors, to local shark sightings. Software developers, even those at small companies or startups, now have access to APIs for integrating advanced GIS tools and functionality into their programs.

As the Director of EIM and GIS Development at Locus, I lead efforts to integrate GIS with our software applications to deliver our customers’ spatial data using the latest GIS technology. Let us take a look at how far GIS has come since I started working with it and at some of the new and exciting possibilities on the horizon.

Origins of GIS

Before you can understand where GIS is today, it helps to know how it started out. This year is the 55th anniversary of the work done by Roger Tomlinson in 1962 with the Canada Land Inventory. We consider this the birth of GIS, and Mr. Tomlinson has been called the “father of GIS”.

The original GIS used computers and digitalization to “unlock” the data in paper maps, making it possible to combine data from multiple maps and perform spatial analyses. For example, in the image shown here from the Canada Land Inventory GIS, farms in Ontario are classified by revenue to map farm performance.

An early GIS system from the Canada Land Inventory, in Data for Decisions, 1967

An early GIS system from the Canada Land Inventory, in Data for Decisions, 1967
Photo: Mbfleming. “Data for Decisions (1967).” YouTube, 12 Aug. 2007, https://youtu.be/ryWcq7Dv4jE.
  Part 1, Part 2, Part 3

In 1969, Jack Dangermond founded Esri, which became the maker of, arguably, the world’s most popular commercial GIS software. Esri’s first commercial GIS, ARC/INFO, was released in 1982, and the simpler ArcView program followed in 1991. That year, 1991, is also the year I started working with GIS, although I used the TransCAD system from Caliper before starting with Esri software a few years later.

Back then, GIS work required expensive software packages installed on personal computers or large mainframe systems. There was no Google Maps; all map data had to be manually loaded into your software. Getting useful data into a GIS usually required extensive file manipulation and expertise in coordinate systems, projections, and geodesy.

While the government, utility, and resource management sectors used GIS heavily, there was not much consumer or personal use of GIS. As for me, I spent a lot of time in my first job digitizing paper maps by hand or trying to figure out why the map data I had loaded into a GIS was not lining up properly with an aerial photo.

Esri’s ArcView 3.2 for desktop computers (from the 1990s)

Esri’s ArcView 3.2 for desktop computers (from the 1990s)
https://map.sdsu.edu/geog583/lecture/Unit-3.htm

The Google Revolution

How much has changed since those early days! After the release of OpenStreetMap in 2004, Google Maps and Google Earth in 2005, and Google Street View in 2007, GIS has been on an unstoppable journey—from only being used by dedicated GIS professionals on large computers in specific workplaces, to be accessible to anyone with an internet browser or a smartphone. High-quality map data and images—often the most expensive item in a GIS project in the 1990’s — are now practically free.

Just think how revolutionary it is that anyone can have instant access to detailed satellite images and road maps of almost anywhere on Earth! Not only can you perform such mundane tasks as finding the fastest route between two cities or locating your favorite coffee shop while on vacation—you can also see live traffic conditions for cities across the globe; view aerial images of countries you have never visited, and get street level views of exotic places. Back in 1991, such widespread access to free map data would have seemed like something straight out of science fiction.

Traffic conditions in London, 3:30 pm 10/16/2017, from Google Maps

Traffic conditions in London, 3:30 pm 10/16/2017, from Google Maps

South Base Camp, Mount Everest, Google StreetView

South Base Camp, Mount Everest, Google StreetView

Mashups in the cloud

Obviously, the amount of spatial data needed to provide detailed coverage of the entire globe is far too large to be stored on one laptop or phone. Instead, the data is distributed across many servers “in the cloud.” Back in the 1990s, everything for one GIS system (data, processing engine, user interface) needed to be in the same physical place—usually one hard drive or server. Now, thanks to the internet and cloud computing, the data can be separate from the software, creating “distributed” GIS.

The combination of freely available data with distributed GIS and the power of smart phones has led us to the age of “neogeography”—in which anyone (with some technical knowledge) can contribute to online maps, or host their maps with data relevant to their personal or professional needs. GIS no longer requires expensive software or cartographical expertise; now, even casual users can create maps linking multiple data sources, all in the cloud.

Google’s MyMaps is an example of a tool for easily making your maps. Maps can range from the playful, such as locations of “Pokemon nests,” to the serious, such as wildfire conditions.

These online maps can be updated in real time (unlike paper maps) and therefore kept current with actual conditions. Such immediate response is instrumental in emergency management, where conditions can change rapidly, and both first responders and the public need access to the latest data.

Map showing wildfire and traffic conditions in northern California, 10/16/2017

Map showing wildfire and traffic conditions in northern California, 10/16/2017
https://google.org/crisismap/us-wildfires

Furthermore, software programmers have created online GIS tools that let non-coders create their maps. These tools push the boundaries of distributed GIS even further by putting the processing engine in the cloud with the data. Only the user interface runs locally for a given user. During this period of GIS history, I created several mashups, including one for viewing natural hazard risks for my hometown. For this application, I combined several data types, including property lines, flood plains, landslide vulnerability, and wildfire risk.

Floodplain data for Buncombe County, NC

Floodplain data for Buncombe County, NC
https://buncombe-risk-tool.nemac.org

Programming GIS with APIs

Another significant advance in GIS technology is the ability to integrate or include advanced GIS tools and features in other computer programs. Companies such as Google and Esri have provided toolkits (called APIs, or application programming interfaces) that let coders access GIS data and functions inside their programs. While neogeography shows the power of personal maps created by the untrained public, computer programmers can use APIs to create some very sophisticated online GIS tools aimed at specific professionals or the public.

During my 10 years at Locus, I have helped create several such advanced GIS tools for environmental monitoring and data management. One example is the publicly-available Intellus application that Locus Technologies developed and hosts for the US Department of Energy’s Los Alamos National Laboratory. It uses an Esri API and distributed GIS to provide access to aerial images and many decades of environmental monitoring data for the Los Alamos, NM area. Users can make maps showing chemical concentrations near their home or workplace, and they can perform powerful spatial searches (e.g., “find all samples taken within one mile of my house in the last year”). The results can be color-coded based on concentration values to identify “hot spots”.

Map from Intellus showing Tritium concentrations near a specified location

Map from Intellus showing Tritium concentrations near a specified location
https://www.intellusnmdata.com

Locus Technologies also provides more sophisticated forms of analysis in its EIM cloud-based environmental management system. For example, contour lines can be generated on a map showing constant values of groundwater elevation, which is useful for determining water flow below ground. With such powerful spatial tools in the cloud, anyone at the organization, from facility managers to scientists, can easily create and share maps that provide insight into data trends and patterns at their site.

Groundwater contour map

Groundwater contour map where each line is a 10 ft. interval, from the Locus EIM system

There’s a (map) app for that

One particularly exciting aspect of GIS today is the ability to use GIS on a smartphone or tablet. The GIS APIs mentioned above usually have versions for mobile devices, as well as for browsers. Programmers have taken advantage of these mobile APIs, along with freely available map data from the cloud, to create apps that seamlessly embed maps into the user experience. By using a smartphone’s ability to pinpoint your current latitude and longitude, these apps can create personalized maps based on your actual location.

A search in the Apple AppStore for “map” returns thousands of apps with map components. Some of these apps put maps front-and-center for traditional navigation, whether by car (Waze, MapQuest, Google), public transit (New York Subway MTA Map, London Tube Map), or on foot (Runkeeper, Map My Run, AllTrails). Other apps use maps in a supporting role to allow users to find nearby places; for example, banking apps usually have a map to show branches near your current location.

What’s really exciting are the apps that allow users to enter data themselves via a map interface. For example, HealthMap’s Outbreaks Near Me not only shows reports of disease outbreaks near your location, but it also lets you enter unreported incidents. The GasBuddy app shows the latest gasoline prices and lets you enter in current prices. This “crowdsourcing” feature keeps an app up-to-date by letting its users update the map with the latest conditions as they are happening.

The Outbreaks Near Me app for phones (left) and the GasBuddy app for tablets (right)

The Outbreaks Near Me app for phones (left) and the GasBuddy app for tablets (right)

Here at Locus Technologies, we use the power of GIS in our Locus Mobile app for field data collection. Users can enter environmental data, such as temperature or pH measurements from a monitoring well, and upload the data back to the EIM cloud for later review and analysis. The Locus Mobile app includes a map interface for navigating to data collection points and tracking visited locations. The app also lets users create new data collection points “on the fly” simply by clicking on the map.

Locus Mobile map interface

The map interface in the Locus Mobile app; blue dotted circles indicate locations that are not yet started.

Looking to the future

Where will GIS go from here? It’s possible that augmented reality, virtual reality, and 3D visualization will continue to expand and become as ubiquitous as the current “2D” maps on browsers and phones. Also, the “internet of things” will surely have a GIS component because every physical “thing” can be tied to a geographical location. Similarly, GIS can play an important role in “big data” by providing the spatial framework for analysis. It will be interesting to see where GIS is when we celebrate the 20th GIS Day in 2019!

Thanks to the GIS Timeline for providing some of the history for this article.

 


Locus employee Todd PierceAbout guest blogger— Dr. Todd Pierce, Locus Technologies

Dr. Pierce manages a team of programmers tasked with development and implementation of Locus’ EIM application, which lets users manage their environmental data in the cloud using Software-as-a-Service technology. Dr. Pierce is also directly responsible for research and development of Locus’ GIS (geographic information systems) and visualization tools for mapping analytical and subsurface data. Dr. Pierce earned his GIS Professional (GISP) certification in 2010.


[jwplayer mediaid=”16590″]

Interested in Locus’ GIS solutions?

Introducing Locus GIS+. All the functionality you love in EIM’s classic Google Maps GIS for environmental management— now integrated with the powerful cartography, interoperability, & smart-mapping features of Esri’s ArcGIS platform!

Learn more about GIS+

 

Can a radical new invention by an 11-year-old girl help to avert another water crisis like in Flint, Michigan?

Gitanjali Rao, an 11-year-old budding scientist from Tennessee

Photo: Rao, Gitanjali. “DE3MYSL Submission – Tethys: The Water Lead Contamination Detector” YouTube

Girl’s device uses nanotubes to test lead contamination in water instantly and cheaply

Gitanjali Rao, an 11-year-old budding scientist from Tennessee, has developed an innovative and radical device using nanotubes to test for lead contamination in water. Named ‘Tethys’, this innovative method to test lead in water could prove to be an effective solution in averting water crises like in Flint, Michigan. The device is linked to a smartphone app for instant visualization of results.

The young scientist was shocked when she learned about the water crisis in Flint and was inspired to find a solution to detect water contamination by speedy analysis of lead in water. She is currently one of the top ten finalists in the Discovery Education 3M Young Scientist Challenge, one of the most distinguished science competitions in the U.S.

How ‘Tethys’ works

When her device is dipped in water, the lead-sensitive material in the nanotube indicates if the water is contaminated with lead. The result is then sent to a Bluetooth-enabled smartphone that shows if the water has safe levels of lead or has concentrations of concern. When the device detects lead levels higher than 15 parts per million, the device warns that the water is unsafe.

“There are over 5,000 water systems in the U.S. alone with lead contamination issues,” says Rao in her entry video. “Timely detection and preventative action can help mitigate the problem, but today it takes a long time because of chemical labs and expensive equipment. My solution addresses a core issue of speedy detection of lead contamination, allowing preventative action and even saving lives!”

Gitanjali is currently working with a mentor at 3M for possible commercialization.

[sc_youtube aspect_ratio=”16:9″ video_id=”7UR6epdce-o” style=”default” position=”below”]

Gitanjali is truly an inspiration to the rest of us as we look for better solutions to the environmental challenges we face today. Here at Locus, we believe that with great ideas like these and the resources and drive to pursue them, many of these challenges can be solved!

Improving Arsenic detection and keeping it out of drinking water

Arsenic, a naturally occurring element, is one of the many drinking water contaminants actively monitored by drinking water systems because it can result in adverse health conditions, including an increased risk for a range of cancers. U.S. EPA and the U.S. Bureau of Reclamation (USBR) are joining forces to launch the Arsenic Sensor Prize Competition for the development of new technology to detect arsenic in water. If you are interested in participating you can read more here:

https://blog.epa.gov/blog/2016/09/were-sensing-a-change-in-water-monitoring-introducing-the-arsenic-sensor-prize-competition/

The use of arsenic as a poison is widely documented. As a result, many people are alarmed when they hear that their drinking water, either from a public or private water system, may contain any amount of arsenic. Exposure to arsenic in drinking water at the level the U.S. Environmental Protection Agency (EPA) currently deems as safe in the United States (10 parts per billion) still may induce adverse health outcomes. The U.S. EPA recently lowered the Maximum Contaminant Level (MCL) for arsenic to 10 µ/L in public water supplies—a regulated level that is considered “safe” for a lifetime of exposure—yet concentrations of 100 µ/L and higher are commonly found in private, unregulated well water in regions where arsenic is geologically abundant, including upper New England (Massachusetts, New Hampshire, Maine), Florida, and large parts of the Upper Midwest, the Southwest, and the Rocky Mountains.

Arsenic is a natural component of the earth’s crust and is widely distributed throughout the environment in the air, water and land. It is highly toxic in its inorganic form.

Arsenic in drinking water.

Measuring and testing for arsenic require expensive instruments and lab work, as well as time. However, with new and emerging technologies, a more efficient arsenic monitoring technology could help to improve the monitoring system, reduce costs, and better protect human health and the environment. Typically, samples are sent to a laboratory for analysis, with results available days to weeks later. New technology could accelerate this process by allowing for immediate detection of arsenic in water. This could reduce monitoring costs and help water utilities more effectively control treatment to remove arsenic from the drinking water supply.
The Arsenic Sensor Prize Competition aims to improve the existing process with upcoming and emerging technology. The competition is not exclusively restricted to sensor developers but seeks applicants from all fields, including information technology. For example, besides sensor technologies, a new data collection and transmission technologies such as Internet of Things (IoT) can also accelerate water quality characterization process or better data management, visualization, and reporting via cloud-based SaaS technologies. Applicant criteria include anyone with ideas for how to rapidly, accurately, and cost-effectively measure arsenic in water.

Locus Technologies is a software company that specializes in providing a SaaS-based solution for water quality management. Arsenic is one of  a key and prolific contaminants in our vast water quality databases. We have a keen interest in supporting this excellent and timely competition to help find a way to automate detection and data collection of arsenic and other contaminants in real time. To help shed some light on the  importance of arsenic in drinking water, we performed a quick check on a total number of arsenic records, hits, and locations across all customers in Locus SaaS EIM (Yes multi-tenant SaaS as otherwise, this statistic would be impossible to gather). This is what we found:

Total number of analytical records: >520,000,000
Number of Arsenic Records: 248,850
Number of Arsenic hits (above action limit MCL of 10 µ/L): 112,597
Number of Arsenic locations: 19,304

If you have ideas and  are interested in helping protect our nation’s drinking water, Locus encourages you to participate. We will have a special prize for the winner.

Locus Technologies introduces EIM GIS+ mapping platform with added features and functionality

Locus EIM GIS+ builds on the original Google Maps-based GIS — with new powerful cartography, interoperability, and smart-mapping technology

MOUNTAIN VIEW, Calif., 6 October 2016 —Locus Technologies (Locus), a leader in SaaS environmental compliance and information management software, introduces the Locus GIS+ mapping platform, a significant upgrade to the current Locus EIM Google Maps-based solution. Locus GIS+ is powered by Esri’s ArcGIS platform and offers a host of advanced features— including enhanced cartography, comprehensive spatial data analysis, and ability to use the customer’s own map through integration with ArcGIS Online and Portal for ArcGIS.

With GIS+, Locus gives users all the tools they need to make professional-looking maps and perform a wide range of data analysis. The new platform is based largely on customer requests and feedback, and it includes an improved user-friendly interface, as well as many new features that are standard in advanced mapping applications. By adding options such as a variety of base maps and hundreds of customizable symbols, advanced editing and label placement, as well as Esri map integration with the customer’s own base layers, Locus GIS+ provides a complete environmental data analysis and mapping solution for Locus EIM users.

Other notable new functionality includes the ability to save multiple query result layers; customizable graduated symbols, color ramps, and histograms to better control how query results display; improved ad hoc location group creation; and more user control over map layer styles and sequencing. The upgraded GIS+ platform is fully compatible with any existing EIM site, and existing customer maps will be seamlessly transferred from Locus’ Google Maps-based GIS to the new GIS+.

GIS+ will be available as an add-on purchase to Locus EIM. It will be open for existing customers to test drive in a free trial period during the 4th quarter 2016, along with an introductory webinar to highlight the power of GIS+. As always, the current Google-based GIS mapping will remain available to all EIM customers.

“GIS mapping capability is essential for all environmental data analysis. Locus GIS is great for quick data visualization, but Locus GIS+ is a quantum leap forward with advanced analysis tools and analysis tools that use Esri’s Smart Mapping technology, and we are sure our customers will be ecstatic with the new features. The features of GIS+ will make a substantial difference in the work that our clients do, as the new features allow for better visualization, better outputs, and better outcomes— all integrated within EIM,” said Wes Hawthorne, President of Locus.

Learn more about GIS+ on our website.

Locus Technologies creates IoT interoperability with Locus Platform

Locus helps customers leverage data, analytical, cloud, and mobile capabilities via IoT-to-Locus SaaS platform


MOUNTAIN VIEW, Calif., 9 August 2016 — Locus Technologies (Locus), the industry leader in cloud-based EHS software, announced today that its multi-tenant SaaS Platform fully interoperates with the Internet of Things (IoT). The company has been the pioneering innovator in the EHS software space since 1999 when it first introduced its Automation and Data Management Groups, which used Internet-based technologies to manage and control vast amounts of data generated at the company’s customer sites.

Locus’ automation technologies have evolved over the years to encompass the vast array of Internet-connected devices, sensors, programmable logic controllers, and other instruments to gather and organize large amounts of streaming data.

The IoT interconnects uniquely identifiable embedded computing, testing, and monitoring devices within the existing Internet infrastructure and software platform. Locus IoT services offer connectivity beyond machine-to-machine communications and cover a variety of protocols, domains, and applications.

“The IoT is one of the fastest-growing trends in tech. When applied to the environmental monitoring industry, there is an overwhelming influx of information that has to be dealt with; many companies are concerned that the sheer volume of data will render the information useless. For that reason, Locus invested in smart software and intelligent databases to deal with this new trend, long before IoT had a common name. We aspire to change the face of the environmental monitoring industry,” said Neno Duplan, CEO of Locus.

In any industry, when all incoming data are connected and centrally accessible through a multi-tenant SaaS application, the flow of information is much more efficient and effective. For example, instead of having a separate data collection protocol from software applications for water quality management, waste management, GHG management, EHS compliance and incident management, a company can have all emissions-related records—regardless of whether they originated in the laboratory, field, or Internet-connected monitoring device—in a single system of record. From this single system of record, they can manage compliance activities, perform data gathering and monitoring, manage water treatment systems remotely, and manage resources for sustainability reporting at the same time. Adopting such a structure offers Locus’ customers the ability to converge all incoming sources of information to create a much-needed integrated enterprise platform for EH&S+S management.

At the crux of this integration is Locus’ highly scalable and end-user configurable Locus Platform. The interoperability combines the Locus Platform as a service with its automation, mobile, and IoT platforms. The combined IoT suite will be hosted on Locus’ cloud.

“By combining our cloud platform and Internet of Things (IoT) platforms to make them interoperable, we provide the single platform for our customers that helps them lower their operational costs, reduce cycle time, and ultimately become better stewards of the environment. This integration will give our customers more analytics from connected devices,” added Duplan.

New spatial data analysis tools added to Locus EIM software

The new graduated symbol and graduated color legend tools allow for creation of sophisticated maps showing environmental data

MOUNTAIN VIEW, Calif., 11 May 2015 — Locus Technologies (Locus), the leader in cloud-based environmental compliance and information management software, has announced the addition of powerful new data analysis tools to the eGIS portion of its Environmental Information Management (EIM) software. The new tools support creation of graduated color and graduated symbol legends when posting analytical results, groundwater levels, and field measurements to the map.

With the graduated color tool, when users post data to the map, they have the option to color code the map symbols by having each result placed into one color ‘bin’ based on the result value. Users can classify the results using one of four different methods: equal interval (each bin has same numerical interval with user specified number of bins); defined interval (each bin has same numerical interval with user specified interval); percent (each bin represents the Nth% of the total result range, for example quantiles or quintiles or deciles); or standard deviation (each bin represents the # of standard deviations from the mean for the result value). There are further options for specifying min and max values for the bins and for picking linear or log scales. If users are comparing results to an action limit, they can also classify results based not on the result but on the exceedance factor (result/action limit).

The graduated symbol tool works the same as the graduated color tool, except instead of color coding results, users can have the symbols change sizes based on the result. By using these new legend tools, users can create sophisticated maps that help visualize their environmental compliance data and quickly see data hotspots or outliers.

 

ABOUT LOCUS EIM
The Locus EIM SaaS offers enterprise environmental information management for analytical data for water quality, chemicals, radionuclides, geology and hydrogeology. EIM provides the whole solution and supports workflow from sample planning, collection, analysis, data validation, visualization and reporting. Locus Mobile is fully integrated with EIM and provides for real time field data collection and synchronization with EIM.

San Jose Water Company selects Locus Technologies for its water quality and environmental management system software

The Locus EIM SaaS will streamline SJWC’s entire water compliance continuum from watershed to water treatment to water quality at its consumer’s tap

MOUNTAIN VIEW, Calif., 24 February 2015 — Locus Technologies, a leader in environmental and compliance enterprise management software, today announced that San Jose Water Company (SJWC), an investor-owned utility providing water service to a population of approximately one million people in the Santa Clara Valley, has selected Locus as its environmental information management system. SJWC is deploying the Locus EIM SaaS-based software to consolidate and manage its field data collection; water compliance and water quality data; and all its environmental compliance and environmental data. SJWC will also use the Locus EIM to manage its environmental permits for all its sites and facilities.

“Water quality and environmental compliance are critical business functions at San Jose Water Company,” said Francois Rodigari, Director of Water Quality and Environmental Services. “Locus and its EIM software are giving us, for the first time, the ability to consolidate and access critical information on data related to water quality and environmental compliance in a single repository based on a cloud platform. This comprehensive view of our water system will help us to comprehensively manage all data related to drinking water and environmental compliance, and as a result, bring higher efficiency to our organization.”

Locus EIM is a comprehensive and configurable software designed to manage mission-critical environmental and sustainability data to help organization organize, manage, report, and visualize sampling, analytical, and subsurface data for compliance and assurance reporting for a variety of vertical markets including water, gas and oil, power generating utilities, and food and beverage.

“Our mission is to help organization, such as San Jose Water Company, to achieve their environmental stewardship goals by providing them the software tools to control the management of all data points of their water quality and compliance management,” said Neno Duplan, President and CEO of Locus. “Our EIM water quality management cloud-based software for surface water, drinking water, groundwater, and wastewater provides our customers with a highly scalable and a feature rich application that gives water utilities strong analytical power, streamlined field sampling capabilities, mobile collection, and analysis as well as compliance management. We are pleased San Jose Water Company will be utilizing EIM to ensure that their customers are provided with the highest water quality possible.”

 

ABOUT SAN JOSE WATER
San Jose Water Company, a wholly owned subsidiary of SJW Corp. and founded in 1866, is an investor-owned water company headquartered in Silicon Valley and is one of the largest and most technically sophisticated urban water system in the United States. SJWC serves over 1 million people in the San Jose metropolitan area comprising about 138 square miles. The utility ensures its buyers with high quality, life sustaining water, with an emphasis on exceptional customer service.