Locus Technologies introduces new calculation engine for GHG emissions inventories

Locus GHG calculation engine eases compliance burdens for GHG tracking

GHG inventories may be the result of mandatory state, regional, or national reporting programs, such as California Air Resource Board (AB32), U.S. EPA Mandatory Reporting Rule, or European Union Emissions Trading Scheme (EU ETS). Organizations need a GHG calculation engine that can calculate GHGs automatically and accurately from all emission-producing activities at all of their facilities anywhere in the world. The new Locus calculation engine supports simultaneous calculations using multiple methods so that users can input data once and report to federal, state, and voluntary reporting programs according to each proper protocol.

The requirements and procedures for GHG reporting are varied, complex, and rapidly evolving. To ensure compliance, companies need a calculation engine that can handle complex equations using appropriate emission factors, conversion factors, and calculation methodologies for each reporting program. The right calculation engine can reduce the stress, time, and potential inaccuracies found in home-grown accounting methods.

New GHG calculation engine removes reporting inaccuracies

As a leading accredited GHG verification company in California, Locus observed challenges that many companies experience with GHG inventory calculation, coupled with the gross inadequacy of tools previously available in the market. Informed by the verification of hundreds of inventories, Locus developed the new calculation engine.

When evaluating carbon management software with built-in calculation engines, companies must ensure that users are able to define both the calculation rules and display of calculated data for the purpose of reporting to various regulators. By giving end users the power to view, analyze, and make changes to analytic model data, Locus helps companies emphasize the transparency of the process and ensure that calculations are correct and that the company meets all verification requirements.

Find out more about Locus’ new GHG calculation engine for tracking emissions inventories.

Check out our white paper “How to Select the Best Greenhouse Gas Calculator for Your GHG Inventory”.

Locus Technologies introduces new calculation engine for GHG emissions inventories

The Locus GHG calculation engine is fully integrated with the dynamic Locus Platform and will automate emissions calculations for large enterprises.

MOUNTAIN VIEW, Calif., 20 November 2015 — Locus Technologies (Locus), the leader in cloud-based environmental compliance and sustainability management software, introduces an all-new calculation engine to its newest platform to redefine how companies organize, manage, and calculate their greenhouse gas (GHG) inventories. The Locus Platform offers a highly configurable, user-friendly interface to fully meet individual organizations’ environmental management needs.

With an increased focus on the role that GHG emissions play in climate change, ensuring that companies’ emissions are reported accurately is more important than ever. GHG emissions reports are coming under increased scrutiny from regulators, stakeholders, verifiers, and financial auditors. Choosing the right calculation engine plays a critical part in remaining compliant with these rapidly evolving requirements and regulations.

Locus GHG calculation engine eases compliance burdens for GHG tracking

GHG inventories may be the result of mandatory state, regional, or national reporting programs, such as California Air Resource Board (AB32), U.S. EPA Mandatory Reporting Rule, or European Union Emissions Trading Scheme (EU ETS). Organizations need a GHG calculation engine that can calculate GHGs automatically and accurately from all emission-producing activities at all of their facilities anywhere in the world. The new Locus calculation engine supports simultaneous calculations using multiple methods so that users can input data once and report to federal, state, and voluntary reporting programs according to each proper protocol.

“The requirements and procedures for GHG reporting are varied, complex, and rapidly evolving. To ensure compliance, companies need a calculation engine that can handle complex equations using appropriate emission factors, conversion factors, and calculation methodologies for each reporting program. The right calculation engine can reduce the stress, time, and potential inaccuracies found in home-grown accounting methods,” said Neno Duplan, President and CEO of Locus.

New GHG calculation engine removes reporting inaccuracies

As a leading accredited GHG verification company in California, Locus observed challenges that many companies experience with GHG inventory calculation, coupled with the gross inadequacy of tools previously available in the market. Informed by the verification of hundreds of inventories, Locus developed the new calculation engine.

“Besides spreadsheets, many calculation engines are proprietary to software vendors and are not transparent. For GHG calculations to pass audits and meet cap & trade requirements, transparency is absolutely required. Some of these ’black box‘ calculation tools have not been sufficiently stress-tested in the market and are generating errors that cause enterprises to fail their GHG verifications. Locus’ calculation engine addresses these deficiencies and capitalizes on the architecture of the highly scalable Locus platform. All calculations are viewable and traceable through the tool to the original data inputs,” said J. Wesley Hawthorne, Locus’ Senior Vice President of Operations and an accredited GHG verifier.

When evaluating carbon management software with built-in calculation engines, companies must ensure that users are able to define both the calculation rules and display of calculated data for the purpose of reporting to various regulators. By giving end users the power to view, analyze, and make changes to analytic model data, Locus helps companies emphasize the transparency of the process and ensure that calculations are correct and that the company meets all verification requirements.

“We listened to industry users and created a configurable calculation engine that is easy to use, dynamically driven, transparent, provides reproducible calculations, and is easy to verify. This calculation engine, along with the Locus Platform, will improve companies’ data collection, analysis, and most importantly, reporting capabilities,” added Duplan.

Locus will conduct live demonstrations of the Locus Platform and calculation engine at the Locus booth at the National Association for Environmental Management (NAEM) 2016 Sustainability Software and Data Management Conference from March 15-16, 2016 in Tampa, FL.

New Environmental Monitoring Technology Keeping the Air We Breathe Under an Unprecedented Level of Scrutiny

A recent article in the Los Angeles Times discussed advances in environmental monitoring technologies. Rising calls to create cleaner air and limit climate change are driving a surge in new technology for measuring air emissions and other pollutants — a data revolution that is opening new windows into the micro-mechanics of environmental damage. Data stemming from these new monitoring technologies coupled with advances in data management (Big Data) and Internet of Things (IOT) as discussed in my article “Keeping  the Pulse of the Planet: Using Big Data to Monitor Our Environment” published last year, is creating all new industry and bringing much needed transparency to environmental degradation. Real time monitoring of  radioactive emissions at any point around globe or water quality data are slowly becoming a reality.

According to the article author William Yardley, “the momentum for new monitoring tools is rooted in increasingly stringent regulations, including California’s cap-and-trade program for greenhouse gas emissions, and newly tightened federal standards and programs to monitor drought and soil contamination. A variety of clean-tech companies have arisen to help industries meet the new requirements, but the new tools and data are also being created by academics, tinkerers and concerned citizens — just ask Volkswagen, whose deceptive efforts to skirt emissions-testing standards were discovered with the help of a small university lab in West Virginia.”

“Taking it all into account, the Earth is coming under an unprecedented new level of scrutiny.”

“There are a lot of companies picking up on this, but who is interested in the data — to me, that’s also fascinating,” said Colette Heald, an atmospheric chemist at the Massachusetts Institute of Technology. “We’re in this moment of a huge growth in curiosity — of people trying to understand their environment. That coincides with the technology to do something more.”

The push is not limited to measuring air and emissions. Tools to sample soil, air emissions, produced water, waste management, monitor water quality, test ocean acidity and improve weather forecasting are all on the rise. Drought has prompted new efforts to map groundwater and stream flows and their water quality across the West.

Two of key issues that need to be addressed are validity of data stemming from new instruments and sensors for enforcement purposes and where is all (big) data be stored and how accessible it will be. The first question will be answered as new hand-held data collection instrumentation, sensors, and devices undergo testing and accreditation by governmental agencies. The second issue, a big data, has already been solved by companies like Locus Technologies that has been aggregating massive amounts of environmental monitoring data in its cloud-based EIM (Environmental Information Management) software.

As the article put it: “When the technology is out there and everyone starts using it, the question is, how good is the data? If the data’s not high enough quality, then we’re not going to make regulatory decisions based on that. Where is this data going to reside in 10 years, when all these sensors are out there, and who’s going to [manage] that information? Right now it’s kind of organic so there’s no centralized place where all of this information is going.”

However, the private industry and some Government organizations like Department of Energy (DOE) are already preparing for these new avalanches of data that are hitting their corporate networks and are using Locus cloud to organize and report increased volume of monitoring information stemming from their facilities and other monitoring networks.

California Governor Orders New Target for Emissions Cuts

California Gov. Jerry Brown issued an executive order Wednesday, April 29, 2015 sharply speeding up California’s already ambitious program aimed at curbing greenhouse gas emissions, saying it was critical to address “an ever-growing threat” posed by global warming to the state’s economy and well-being. In an executive order, Brown said the state must cut the pollutants to 40% below 1990 levels by the year 2030.
Brown’s order aligns the California’s goals with standards set by the European Union.

Mr. Brown said this tough new interim target was essential to prod the energy industry to act and to help the state make investment and regulatory decisions that would assure that goal was not missed.

Environmental and Sustainability Software: How one company’s cloud environmental and sustainability software is changing how firms and government manage environmental information.

How one company’s cloud environmental and sustainability software is changing how firms and government manage environmental information.

California to Regulate Groundwater in 2015

California’s drought prompted the Legislature into action in 2014, leading lawmakers to regulate groundwater for the first time. The state will begin the long process of regulating groundwater for the first time in the state’s history under three new laws that require local agencies to create sustainable groundwater management plans to ensure priority basins are sustainable by 2040.

Since the state’s founding, water has been considered a property right; landowners have been able to pump as much water from the ground as they want. But increasing reliance on underground water, particularly during droughts, has led to more pumping from some basins than what is naturally being replaced.

On 16 September 2014, California Governor Jerry Brown signed three companion bills, The three bills: SB 1168, AB 1739 and SB 1319, which compose the Sustainable Groundwater Management Act (the Act) create the first comprehensive framework for regulating groundwater in California, placing managerial and monitoring responsibilities in the hands of local agencies while also creating mechanisms under which state agencies may oversee and potentially even intervene in groundwater management. With the Act to go into effect on 1 January 2015, and numerous implementation deadlines, stakeholders throughout the state should prepare for increased regulation, management, and oversight.

The Act requires the establishment of groundwater sustainability agencies (GSA) for groundwater basins in the state. By 31 January 2015, the Department of Water Resources (DWR) will classify each groundwater basin (as identified by DWR Bulletin 118) as high, medium, low or very low priority. GSAs responsible for high- and medium-priority groundwater basins must create and implement a groundwater sustainability plan (GSP) for their basins. Groundwater basins, or portions of groundwater basins, which are subject to a previous groundwater adjudication are exempt from the GSP requirement.

Once formed, GSAs will have broad groundwater management and investigatory powers to prepare and execute the GSP. GSAs may inspect property or facilities to ensure the requirements of the GSP are being met, including use of surface waters. Further, the GSA will have the authority to regulate and limit groundwater extractions, require the submission of annual extraction reports or impose well spacing requirements, among other substantial powers.

The Act requires that GSPs be designed to achieve “sustainable groundwater management” for the basin within 20 years of implementation. “Sustainable groundwater management” is defined as the maintenance of groundwater use in a manner that does not cause “undesirable results.” An undesirable result is the occurrence of at least one of the following:

  • Chronic lowering of groundwater levels, indicating a significant and unreasonable depletion of supply.
  • Significant and unreasonable reduction of groundwater storage.
  • Significant and unreasonable seawater intrusion.
  • Significant and unreasonable degradation in water quality.
  • Significant and unreasonable land subsidence that substantially interferes with surface land uses.
  • Surface water depletions that have significant and unreasonable adverse impacts on beneficial uses of the surface water.

US-China Deal on Carbon Emissions to Potentially Impact Climate Talks

In 1997, the world’s first climate change treaty, the Kyoto Protocol, failed to stop the rise of plant-warming pollution. Nearly two decades later, there is new hope for the impending climate change negations that are to occur in Paris next year.

Earlier this month, Obama and Xi Jinping, China’s president, came to an agreement to commit to lowering their nations’ carbon emissions. The ramifications of such a commitment from two of the world’s largest emitters has many environmentalists excited for a shift in global politics.

As David B. Sandalow, Obama’s former assistant secretary for energy policy and international affairs, comments, “For the world’s biggest emitters to be coming together and announcing concrete numbers, serious numbers, sends a signal to the world.” One of the many reasons the Kyoto Protocol is not considered a success is due to a standoff between the two nations who refused to sign the deal in 1997.

The Kyoto plan was meant to force developed countries, such as the United States, to cut fossil fuel emissions, while developing countries like China were exempt. Due to these conditions, the United States refused to ratify the treaty. Since 1997, China has grown to become one of the world’s largest carbon polluters. The standoff between two of the world’s superpowers caused many other governments to refuse to cut emissions as well.

Despite these negotiations, many experts claim that these emissions reductions are not enough to reduce the global atmospheric temperatures. Scientists expect the atmospheric temperature to increase by at least 2 degrees Celsius, tipping the planet into a trend of dangerous warming. Such conditions will result in the loss of large areas of arable land, melting Arctic sea ice and rapidly increasing sea levels, among many other dreadful climate changes.

These Scientists have concluded that in order to avoid such catastrophic conditions, the world’s largest economies must commit to a much more extreme plan of emission reduction, in a much shorter amount of time. Additionally, many Paris deal-negotiating experts claim that in order for significant change to occur, the final deal must include a tax on industries for their carbon emissions.

Although many are hopeful for the upcoming Paris negotiations, others are taking a more pragmatic stance. Laurence Tubiana, France’s climate change ambassador to the United Nations, states that she does not believe the Paris deal will result in a traditional treaty. Tubiana envisions a “Paris Alliance” which she anticipated will resemble a collection of targets pledge by individual countries, as well as governmental pledges to follow through with domestic action.

The opinions on how the Paris deal will pan out are varied; many are not convinced how the agreement between the United States and China will influence other major emitters. Despite these concerns, negotiators can all agree that if the treaty fails to stave off a 2-degree temperature increase, the 2015 deal must include provisions to assist poor countries deal with the resulting climate change.  Rich countries will meet in Berlin to formally announce their pledges for such provisions, with hopes of reaching their $100 billion goal.

UN report: Irreversible climate change deadline

The latest United Nations’ world climate report states that greenhouse gas emissions will need to stop by 2100 or the world will face irreversible change.

The final report by the Intergovernmental Panel on Climate Change (IPCC) includes the findings from the three previous reports, and includes more than 30,000 independent studies about climate. The bottom line conclusion is a 95 percent accurate assessment that climate change is both real and almost entirely man-made. It also states that if greenhouse gas emissions continue unabated, the results will be irreversible. Effects will include even hotter years than the recent record setting ones, rising sea levels, agricultural disruption, and even potential changes in the male-female population ratios.

The physical changes outlined in the report won’t be the limit to the secondary societal changes. Famine and drought have already exasperated issues in parts of Africa, and rising human migration from areas affected by climate change will cause even more conflicts between nation states. The rise in heat will also cause increases in health issues.

2014 may be the hottest year on record, and if the heat trends continue, growing regions will change, causing untold potential economic disruption to traditional agricultural areas. Coastal towns and resort communities could find themselves underwater and forced to move inland to higher elevations or forcing never-ending construction of offshore breakwaters.

The primary conclusion from the IPCC report is that all countries will need to reduce, and eventually halt, use of fossil fuels and move to renewable and environmentally friendly sources of energy. And while twenty-eight European nations have agreed to reduce emissions to almost half of their 1990 levels in the next fifteen years, the United States still hasn’t even come to a political agreement between Republican and Democrats if climate change is even real.

Decisions made in the next couple of decades by politicians and citizens around the world will determine if this “irreversible” deadline in going to be met with change or if we’ll be walking into 2100 different world than we are now.

NASA now says massive methane cloud over U.S. Southwest is legitimate

Several years ago, NASA scientists discovered a cloud of methane gas over the Four Corners of the American southwest that measured about the size of Delaware. The unusually high readings were dismissed then; however, a new study today confirms that the methane hot spot is legitimate.

“We didn’t focus on it because we weren’t sure if it was a true signal or an instrument error,” said NASA research scientist Christian Frankenberg, who works in NASA’s Jet Propulsion Laboratories in Pasadena, California.

The Christian Science Monitor website states that a 2,500 square mile methane cloud over the region where Colorado, Utah, New Mexico, and Arizona connect traps more heat in a 1-year period than all of Sweden’s annual carbon dioxide emissions.

To provide an overview of gases that endanger the Earth’s atmosphere, methane gas is the most powerful of the greenhouse gases. Carbon dioxide is another greenhouse gas, and is more abundant in our atmosphere. However, methane is more effective at trapping heat in the atmosphere than carbon dioxide.

A new study published 10 October 2014 in the journal Geophysical Research Letters takes a look at the data discovered several years ago and confirms what we now know to be North America’s largest methane hot spot. According to lead author of the study, Eric Kort, a professor of Atmospheric, Oceanic, and Space Sciences at the University of Michigan in Ann Arbor, Michigan, the source of the methane is from extensive coal mining activity in the San Juan Basin. According to Kort, the Basin is “the most active coalbed methane production area in the country.”

There has been a notable increase in fracking in that region. Both Kort and Frankenberg believe that the earlier coal mining is most likely to blame for the methane cloud.  From 2003 to 2009, the study shows there were 0.59 million metric tons of methane released each year — 3.5 times more than previous estimates.

According to Kort, “The results are indicative that emissions from established fossil fuel harvesting techniques are greater than inventoried. There’s been so much attention on high-volume hydraulic fracturing, but we need to consider the industry as a whole.”

Cities Band Together to Curb Their Greenhouse Gas Emissions

The United Nations is calling this the largest banded effort to decrease cities’ greenhouse gas emissions. On 23 September 2014, the UN launched a Global Compact of Mayors, the world’s largest effort for fighting climate change on the city level. The Compact of Mayors has set goals of reducing greenhouse gas emissions by 454 tonnes by 2020.

During the UN Climate Summit 2014 in NYC, Mayor of the South African city of Johannesburg, Mpho Franklyn Parks Tau said, “In many ways, cities all over the world are leading the way by example: not only setting ambitious emission reduction targets, but [also] working collaboratively to help each other to achieve our respective goals.”

Tao goes on to tell SciDev.Net that this “places a collective responsibility on all of us because we are accountable to each other. As partners, we can also tap into the knowledge and expertise of other cities that have the same objectives.” Tau cites that 15 cities, including Copenhagen, London, and Washington DC, have committed to cut their emissions by more than 70% by 2050.

To pave the way, Johannesburg is now generating, rather than using, electricity while treating their sewage, and they continue expanding their Rea Vaya rapid transport system to reduce the city’s carbon footprint by decreasing the use of personal cars.

The Integrated Program on Sustainable Cities was launched by The Global Environment Facility (GEF) at the summit, which commits $100 million to establish a common platform for cities to access and share solutions on climate change adaptation and mitigation, energy, transport and water. South and South-East Asia cities are leading the way in climate-proofing.