New Environmental Monitoring Technology Keeping the Air We Breathe Under an Unprecedented Level of Scrutiny

A recent article in the Los Angeles Times discussed advances in environmental monitoring technologies. Rising calls to create cleaner air and limit climate change are driving a surge in new technology for measuring air emissions and other pollutants — a data revolution that is opening new windows into the micro-mechanics of environmental damage. Data stemming from these new monitoring technologies coupled with advances in data management (Big Data) and Internet of Things (IOT) as discussed in my article “Keeping  the Pulse of the Planet: Using Big Data to Monitor Our Environment” published last year, is creating all new industry and bringing much needed transparency to environmental degradation. Real time monitoring of  radioactive emissions at any point around globe or water quality data are slowly becoming a reality.

According to the article author William Yardley, “the momentum for new monitoring tools is rooted in increasingly stringent regulations, including California’s cap-and-trade program for greenhouse gas emissions, and newly tightened federal standards and programs to monitor drought and soil contamination. A variety of clean-tech companies have arisen to help industries meet the new requirements, but the new tools and data are also being created by academics, tinkerers and concerned citizens — just ask Volkswagen, whose deceptive efforts to skirt emissions-testing standards were discovered with the help of a small university lab in West Virginia.”

“Taking it all into account, the Earth is coming under an unprecedented new level of scrutiny.”

“There are a lot of companies picking up on this, but who is interested in the data — to me, that’s also fascinating,” said Colette Heald, an atmospheric chemist at the Massachusetts Institute of Technology. “We’re in this moment of a huge growth in curiosity — of people trying to understand their environment. That coincides with the technology to do something more.”

The push is not limited to measuring air and emissions. Tools to sample soil, air emissions, produced water, waste management, monitor water quality, test ocean acidity and improve weather forecasting are all on the rise. Drought has prompted new efforts to map groundwater and stream flows and their water quality across the West.

Two of key issues that need to be addressed are validity of data stemming from new instruments and sensors for enforcement purposes and where is all (big) data be stored and how accessible it will be. The first question will be answered as new hand-held data collection instrumentation, sensors, and devices undergo testing and accreditation by governmental agencies. The second issue, a big data, has already been solved by companies like Locus Technologies that has been aggregating massive amounts of environmental monitoring data in its cloud-based EIM (Environmental Information Management) software.

As the article put it: “When the technology is out there and everyone starts using it, the question is, how good is the data? If the data’s not high enough quality, then we’re not going to make regulatory decisions based on that. Where is this data going to reside in 10 years, when all these sensors are out there, and who’s going to [manage] that information? Right now it’s kind of organic so there’s no centralized place where all of this information is going.”

However, the private industry and some Government organizations like Department of Energy (DOE) are already preparing for these new avalanches of data that are hitting their corporate networks and are using Locus cloud to organize and report increased volume of monitoring information stemming from their facilities and other monitoring networks.

California Lawmakers Approve Ban on Plastic Microbeads to Protect Water

California approves AB888, an important bill to prohibit the use of plastic microbeads in personal care products for sale in California by 2020. When someone uses a product – like a face wash, for example – that has microbeads, several things happen. First – they get a unique kind of cleanse in their face that beauty companies suggest they can’t get any other way. Second – the microbeads (tiny pieces of plastic) are washed down the drain with water. These microbeads do not get recycled. They do not get caught in filters before they hit the sea. They pollute.

With two just-released studies showing overwhelming levels of plastic pollution in San Francisco Bay and in Half Moon Bay’s marine life, it’s not an exaggeration to say that this bill will have a huge impact on the health of California’s waterways — and its people. Alaska, Hawaii, Iowa, Minnesota, New York, Vermont, and Washington also tried and failed this year to enact bans on manufacture and sale, while Oregon’s legislature is considering similar bans.

Studies found that San Francisco bay is contaminated with tiny pieces of plastic in greater concentrations than other U.S. bodies of water — at least 3.9 million pieces every day. Many of those plastic particles are tiny microbeads, less than one millimeter in diameter, which can be found in personal care products like shower gels, facial scrubs and toothpaste.

AB888 will ban the beads by 2020. Product manufacturers can use other exfoliants that aren’t as environmentally destructive, and increasingly, states are demanding that they do so. Six other states have already passed legislation that bans or restricts their use.

In addition to the plastic polluting our waterways — there are 471 million microbeads released into the bay every day from wastewater treatment facilities, Gordon said — they also contaminate the fish that we eat. A recent study in the publication Scientific Reports found “anthropogenic debris” in 25 percent of the fish sampled at markets in California.

EPA Imposes New Limits for Toxic Pollutants Released into Water

The Environmental Protection Agency  (EPA) has imposed new standards for mercury, lead and other toxic pollutants that are discharged into the water bodies (rivers and streams) from steam-powered electric power plants.

EPA Administrator Gina McCarthy said the rules, the first national limits on pollutants from steam electricity plants, will provide significant protections for children and communities across the country from exposure to pollutants that can cause serious health problems.

The rule will remove 1.4 billion pounds a year of toxic discharge nationwide. More than 23,000 miles of rivers and streams across the US are polluted by steam electric discharges, which occur close to 100 public drinking water intakes and nearly 2,000 public wells across the nation, the EPA said.

Toxic metals do not break down in the environment and can contaminate sediment in waterways and harm aquatic life and wildlife, including killing large numbers of fish. Steam electric power plants account for about 30 percent of all toxic pollutants discharged into streams, rivers and lakes from U.S. industrial facilities. The pollutants can cause neurological damage in children, lead to cancer and damage the circulatory system, kidneys and livers.

The EPA said most of the nation’s 1,080 steam electric power plants already meet the requirements. About 12 percent, or 134 plants, will have to make new investments to do so. A water quality management software like Locus EIM can help utilities automate their compliance with this new rules and manage water quality across portfolio of their plants.

Colorado Mine Spill Highlights Superfund Challenges

The Colorado mine spill that sent three million gallons of toxic sludge into a river last month highlighted the struggles of the federal Superfund program to clean up contaminated mining sites across the American West, reported Wall Street Journal on 12 September 2015.

The program, administered by the Environmental Protection Agency, was set up in the 1980s to remediate the nation’s most polluted places, from old factories to landfills. But it has been especially strained by legacy mining sites, which are often impossible to permanently clean up and instead require water-treatment plants or other expensive measures to contain widespread pollution, experts say.

The result is that some old mining sites widely acknowledged to be severely contaminated—such as the Gold King mine that led to last month’s spill, and others dotting the Upper Animas River Basin near Silverton, Colo.—haven’t been contained or cleaned, as the EPA and other stakeholders squabble about the best solution.

Currently, dozens of mining sites around the U.S. are on the EPA’s “National Priorities List” for Superfund cleanups or proposed to be added to the tally. But the taxes designed to fund cleanup costs when responsible parties can’t be found expired in 1995, and the multibillion-dollar fund dwindled to zero in the 2003 fiscal year, according to EPA data. Congressional appropriations have since helped support the program, but they decreased to nearly $1.1 billion this fiscal year from $1.3 billion in 2010.

Locus makes ENR TOP 200 Environmental Firms as the only EHS Software company

California Governor Orders New Target for Emissions Cuts

California Gov. Jerry Brown issued an executive order Wednesday, April 29, 2015 sharply speeding up California’s already ambitious program aimed at curbing greenhouse gas emissions, saying it was critical to address “an ever-growing threat” posed by global warming to the state’s economy and well-being. In an executive order, Brown said the state must cut the pollutants to 40% below 1990 levels by the year 2030.
Brown’s order aligns the California’s goals with standards set by the European Union.

Mr. Brown said this tough new interim target was essential to prod the energy industry to act and to help the state make investment and regulatory decisions that would assure that goal was not missed.

Environmental and Sustainability Software: How one company’s cloud environmental and sustainability software is changing how firms and government manage environmental information.

How one company’s cloud environmental and sustainability software is changing how firms and government manage environmental information.

Locus Technologies receives EBJ Business Achievement award for Information Technology

Environmental Business Journal (EBJ) recognizes firms for growth and innovation in 2014

MOUNTAIN VIEW, Calif., 10 March 2015 — Locus Technologies announced today that Environmental Business Journal (EBJ), a business research publication which provides high value strategic business intelligence to the environmental industry, granted the company the 2014 award for Information Technology in the environmental and sustainability industry for the ninth time.

Locus was recognized for significant strategic strides in 2014 including entering the water quality management (drinking water supplies and waste water) market; introducing its new Locus Platform (a highly configurable, user-friendly interface to fully meet individual organizations’ environmental management needs); and launching Locus Mobile (a field data collection solution that is fully integrated with Locus’s flagship Environmental Information Management [EIM] platform). In addition, Locus continues to maintain its leadership position in the commercial nuclear industry by solidifying business with more than 50 percent of all U.S. commercial reactor facilities that use Locus EIM for radionuclides monitoring management.

“Locus continues to influence the industry with its forward-thinking product set and eye for customer needs,” said Grant Ferrier, president of Environmental Business International Inc. (EBI), publisher of Environmental Business Journal.

“We are very proud to receive the prestigious EBJ Information Technology award in environmental business for the ninth time. It is a statement of our vision and perseverance to accomplish this level of recognition, especially now as we lead the market by providing robust solutions for the emerging space of cloud and mobile-based environmental information management,” said Neno Duplan, President and CEO of Locus Technologies.

The 2014 EBJ awards, hosted by EBI Inc., will be presented at the annual executive retreat called the Environmental Industry Summit XIII in San Diego, Calif. on March 11-13, 2015.

Could the Influence of “Under the Dome” — a Chinese Documentary about Smog Pollution — Equal the American Book the “Silent Spring”?

In just three days, Chinese documentary film “Under the Dome” generated 136 million views on the Chinese government Tencent video portal and sparked vibrant discussions of the country’s dense and devastating pollution problems, specifically health issues relating to smog. The huge online response illustrates perhaps indicates greater official tolerance for public discussion of the country’s environmental challenges.

Produced by Chai Jing, a former anchor at state broadcaster China Central Television, and presented in TED Talk style, the film released at 12 noon Saturday, 28 February 2015 taps researchers from around the world discussing the health effects of smog.

The enthusiastic response to the 104-minute film — and the fact government censors have permitted it to stream on major internet portals — suggest officials want to harness public pressure to build political support for tougher measures to combat the problem.

Chen Jining, environmental protection minister, said on Sunday he had texted Ms. Chai to thank her for a film “worthy of admiration”. Mr. Chen compared the film to Rachel Carson’s 1962 book Silent Spring, which is credited with galvanizing the modern environmental movement in the US, official media reported.

European Study on Chemical Composition of Fracking Wastewater: Can it be drinkable?

Have you heard of “halogenated hydrocarbons”? It is a group of chemicals containing elements that when consumed by humans, it can damage the nervous system and your liver. Normally, these compounds are not on your daily menu.  But studies suggest these elements are appearing in water as by the reuse of fracking wastewater which ironically has been treated with chlorine-containing antibacterial chemicals.  The process of cleaning the water is a common practice. More studies of treated wastewater are being conducted to more clearly determined if the creation of halogenated hydrocarbons from antibacterial chemicals occurs during treatment of wastewater or during reuse.

Produced water, water that is chemically cleaned, can contain a complex mixture of metals — salts and other chemicals, partly composed of the original fracturing fluid components — plus chemicals released by the rocks in the area. Large volumes of water used for fracking poses some level of side effects of the wastewater on human and environmental health. To investigate further, researchers in Europe, in one of the most comprehensive studies of chemical composition of its kind to date, took samples of produced water from three fracking sites in the US.  A number of different analysis techniques were used to determine the chemical composition of the samples, although not the concentrations of the different organic (carbon-based) constituents.

The researchers found that produced water contained a diverse array of chemicals including toxic metals such as mercury and the carcinogens toluene and ethylbenzene. However, a group of harmful chemicals, ‘polyaromatic hydrocarbons’ commonly found in mining and coal extraction wastewater, were absent.

A wide range of metals were found in all samples, but varied depending on the geology of the area. Among these were chromium, mercury and arsenic, all of which were found at levels exceeding US maximum contamination levels (MCL) for drinking water in at least one well. Over 50 different organic chemicals were identified, the majority of which were part of a group of chemicals called ‘saturated hydrocarbons’. Many of these were common to more than one well. They included carcinogens toluene and ethylbenzene. However, the researchers did not find polyaromatic hydrocarbons, which are usually found in mining and coal extraction wastewater.

The authors believe that detailed chemical analyses of produced waters, such as theirs, highlight problems in wastewater treatment protocols,  In particular, the problem of developing a process that removes a wide range of organic compounds. While the findings of this research are based on fracking sites in the US, they may also be useful for other regions where fracking is being actively pursued, such as the UK, and could help to develop policies and techniques to reduce the risk of environmental contamination.

Fresh water continues to be challenged, not from just drought or salt contamination, but from the process of re-creating quality drinking water.